Weak Convergence Theorems for Maximal Monotone Operators with Nonspreading mappings in a Hilbert space
نویسندگان
چکیده
Let C be a closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping of C into itself, let A be an α-inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. We introduce an iterative sequence of finding a point of F (T )∩(A+B)0, where F (T ) is the set of fixed points of T and (A + B)0 is the set of zero points of A + B. Then, we obtain the main result which is related to the weak convergence of the sequence. Using this result, we get a weak convergence theorem for finding a common fixed point of a nonspreading mapping and a nonexpansive mapping in a Hilbert space. Further, we consider the problem for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of a nonspreading mapping. RESUMEN Sea C un subconjunto convexo cerrado de un espacio real de Hilbert H. Sea T una asignación de C en śı mismo, sea A una asignación monótona α-inversa de C en H y 12 Hiroko Manaka and Wataru Takahashi CUBO 13, 1 (2011) sea B un operador monotono máximal en H tal que el dominio de B está incluido en C. Se introduce una secuencia iterativa para encontrar un punto de F (T ) ∩ (A + B)0, donde F (T ) es el conjunto de puntos fijos de T y (A + B)0 es el conjunto de los puntos cero de A+B. Entonces, se obtiene el resultado principal que se relaciona con la convergencia débil de la secuencia. Utilizando este resultado, obtenemos un teorema de convergencia para encontrar un punto común de una asignación fija y una asignación en un espacio de Hilbert. Además, consideramos el problema para encontrar un elemento común del conjunto de soluciones de un problema de equilibrio y el conjunto de puntos fijos de una asignación.
منابع مشابه
The Equilibrium Problem for Nonspreading-type Mappings in Hilbert Spaces
In this paper, an iterative algorithm for equilibrium problems and a class of strictly pseudononspreading mappings which is more general than the class of nonspreading mappings studied recently in Kurokawa and Takahashi [23] is proposed. Some weak convergence theorems are proved under suitable conditions in Hilbert space.
متن کاملEquilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space
In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...
متن کاملApplications of Bregman-Opial property to Bregman nonspreading mappings in Banach spaces
The Opial property of Hilbert spaces and some other special Banach spaces is a powerful tool in establishing fixed point theorems for nonexpansive, and more generally, nonspreading mappings. Unfortunately, not every Banach space shares the Opial property. However, every Banach space has an alike Bregman-Opial property for Bregman distances. In this paper, using Bregman distances, we introduce t...
متن کاملStrong Convergence Theorems by Hybrid Methods for Maximal Monotone Operators and Generalized Hybrid Mappings
Let C be a closed convex subset of a real Hilbert space H. Let T be a supper hybrid mapping of C into H, let A be an inverse strongly monotone mapping of C into H and let B be a maximal monotone operator on H such that the domain of B is included in C. In this paper, we introduce two iterative sequences by hybrid methods of finding a point of F (T )∩ (A+B)−10, where F (T ) is the set of fixed p...
متن کاملConvergence Theorems of Approximate Proximal Point Algorithm for Zeroes of Maximal Monotone Operators in Hilbert Spaces
In this paper, we introduce two kinds of iterative algorithms for finding zeroes of maximal monotone operators, and establish strong and weak convergence theorems of the modified proximal point algorithms. By virtue of the established theorems, we consider the problem of finding a minimizer of a convex function. Mathematics Subject Classification: Primary 47H17; Secondary 47H05, 47H10
متن کامل